GCE Physics - PH4

January 2013 - Markscheme

Question			Marking details	Marks Available
1	(a)	(i)	$T = \frac{1}{f} = 1.6 \underline{\mathbf{or}} \omega^2 = \frac{k}{m} (1)$	[3]
			algebra i.e. $m = \frac{T^2 k}{4\pi^2}$ or $\omega = 2\pi f(1)$	
			$m = \frac{1.6^2 \times 2640}{4\pi^2} (1) = [171 \mathrm{kg}]$	
		(ii)	$\frac{1}{2}mv^2 = 2150$ (1)	[2]
			$v = 5.01 [{\rm m s^{-1}}]$ (1) ecf on <i>m</i>	
		(iii)	2.15[kJ] (1)	[2]
			conservation of energy stated or implied $/ \frac{all}{all} \text{KE}$ transferred to PE	
			(1) (accept energy cannot be created or destroyed)	
		(iv)	$v = \omega A$ (1) or suitable alternative	[2]
			A = 1.28 [m] (1) ecf	
		(v)	$x = \pm A \sin\left(2\pi ft\right) (1)$	[3]
			For 1^{st} mark ω must be substituted.	
			$a = -\omega^2 x \text{ used (1)}$	
			$13.9 [m s^{-2}](1)$ ecf	
	(b)		Resonance / maximum amplitude (1) since natural frequency /	[2]
			$\frac{1}{0.625} = 1.6$ (1)	
			$\frac{1}{0.625} = 1.6$ (1)	

© WJEC CBAC Ltd.

PMT

Question			Marking details	Marks Available		
(c)			Basic shape (decreasing to 1.4 m with a cos or –cos shape) (1)	[3]		
			period = $1.6 \text{ s} (\text{accept } 1.5 - 1.7 \text{ s}) (1)$			
			period constant (1)			
	Question 1 total					
2	(a)		$\frac{1}{2}m\overline{c^2}$ KE of a particle /atom/molecule	[1]		
			³ <i>aDT</i> internal energy (accent total <i>KE</i>)	[1]		
			$\frac{1}{2}$ <i>nK1</i> internal energy (accept total KE)			
	(b)	(i)				
			$N_A \times \frac{1}{2}m\overline{c^2} = \frac{3}{2} \times 1 \times RT$ (1) (or equivalent)			
			e.g. $\frac{1}{2}m\overline{c^2} = \frac{3}{2}kT$			
			$\overline{c^2} = \frac{3RT}{mN_A}$ (1) (i.e. algebra)	[3]		
			rms speed = $1350 [m s^{-1}]$ (1)			
		(ii)	$p = \frac{1}{3}\rho \overline{c^2} $ (1)	[2]		
			$p = 1.16 \times 10^5 \text{ Pa} / \text{Nm}^{-2}$ (1) ecf <u>UNIT mark</u>			
			Or suitable alternative method			
			Question 2 total	[7]		

Question			Marking details	Marks Available
3	(a)		The [vector] sum of the momenta [of bodies in a system] stays	[2]
			constant [even if forces act between the bodies], (1) provided there is no external [resultant] force. (1)	
	(b)	(i)	$1.78 \times 10^{-25} \text{ x } u = 5.62 \times 10^5 \text{ x } 1.71 \times 10^{-25} \pm 1.36 \times 10^7 \text{ x } 6.64 \times 10^{-27} $ (1)	
			<i>u</i> = $\{5.62 \times 10^5 \times 1.71 \times 10^{-25} - 1.36 \times 10^7 \times 6.64 \times 10^{-27} \}/1.78 \times 10^{-25}$	[3]
			i.e. correct algebra and sign (1) $u = 32600[\mathrm{ms^{-1}}] (1)$	
		(ii)	$E = \frac{hc}{\lambda}$ {or $E = hf$ and $c = f\lambda$ } (1)	
			Algebra and $p = \frac{h}{\lambda}$ (1) (Use of both $E = mc^2$ and $p = mc$ award 1 mark only.)	[2]
		(iii)	$p = \frac{E}{c}$ attempted (1)	[3]
			$5.62 \times 10^5 \times 1.71 \times 10^{-25}$ used as a denominator (1)	
			$\frac{6.93 \times 10^{-22}}{5.62 \times 10^5 \times 1.71 \times 10^{-25}} \times 100 = 0.72\% $ (1)	
			(accept: $4.5 \ge 10^{18}$ %)	
			Question 3 Total	[10]

Question			Marking details	Marks Available
4	<i>(a)</i>		horizontal arrow to right at P (1)	
			both other arrows correct direction (1)	[2]
	<i>(b</i>)		-5μC 6μC -5μC -5μC	
			$E = \frac{4}{4\pi\varepsilon_0 r^2} \text{ used (1)} \text{ e.g. } \frac{6000000}{3^2}$ $E = 6000\text{N}\text{C}^{-1}(1)\underline{\text{UNIT mark}}$	[2]
	(c)		$E = \frac{Q}{4\pi\varepsilon_0 r^2}$ used for negative charge (1) (answer = 1800)	
			e.g. $\frac{5 \times 9 \times 10^9}{5^2}$ but not $\frac{5 \times 9 \times 10^9}{3^2}$	[3]
			resultant = $3840[\mathrm{N}\mathrm{C}^{-1}]$ [to the right] (1) ecf on arrows	
	(<i>d</i>)	(i)	correct equation used (1) e.g. $\frac{5 \times 9 \times 10^9}{5}$	[3]
			Attempt at adding 3 potentials (1) e.g. $\frac{(6-5-5)\times9\times10^9}{5}$	
			$\frac{1}{4\pi\varepsilon_0} \left\{ \frac{6}{3} - \frac{5}{5} - \frac{5}{5} \right\} $ (1) or equivalent obviously giving zero	
		(ii)	(Energy) - final total energy must be zero or final potential is also	[3]
			Initially (resultant) force / field is to the right (1)	
			Then (resultant) force / field is to the left or deceleration (1)	
			Question 4 Total	[13]

Question			Marking details	Marks Available	
5	(a)		$\frac{\Delta\lambda}{\lambda} = \frac{v}{c} \text{ used } (1)$ $\Delta\lambda = \frac{9.4x10^5}{3x10^8} x656 = 2.06 \text{ [nm]} (1)$ $\Delta\lambda = \frac{6.6x10^5}{3x10^8} x656 = 1.44 \text{ [nm]} (1)$	[3]	
	(b)		$F = \frac{GMm}{r^2}$ used <u>or</u> $g = \frac{GM}{r^2}$ (1) $F = 2.37 \ge 10^{-11}$ [N] (1)	[2]	
	(c)	(i)	$\frac{mv^2}{r} = \frac{GMm}{r^2} (1)$ convincing algebra (1)	[2]	
		(ii)	$v = \sqrt{\frac{GM}{r}} = \sqrt{\frac{6.67 \times 10^{-11} 8 \times 10^{39}}{1.5 \times 10^{20}}}$ or calculating <i>M</i> using <i>v</i> (1st mark algebra) (1) $v = 60\ 000\ [m\ s^{-1}]\ or\ M = 4.4 \ x\ 10^{40}\ or\ G = 3.675 \ x\ 10^{-10}\ (1)$ Comment: (1) allow ecf If <i>v</i> - suggests dark matter since actual <i>v</i> is greater If <i>M</i> - yes If <i>G</i> - yes because larger <i>G</i> or stronger gravity	[3]	
			Question 5 Total	[10]	

DM	Τ
L IVI	1

Que	stion	Marking details	Marks Available	
6	<i>(a)</i>	$period = 44 [days] \pm 2 days (1)$		
		correct conversion to seconds (allow ecf) (1) $(= 3.83 \times 10^6 \text{ s})$	[2]	
	(b)	$v = \frac{2\pi r}{T}$ or equivalent e.g. $v = \omega r$ and $\omega = \frac{2\pi}{T}$ (1) vT = 18 ra	[2]	
		$r = \frac{v_T}{2\pi} = \frac{18\pi a}{2\pi} (1) (=1.097 \text{ x } 10^7) \text{ ecf on } T$		
	(c)	$d^3 = \frac{T^2 G(M_1 + M_2)}{4\pi^2}$ i.e. algebra nearly complete (1)		
		$(M_1 + M_2) \approx M_1$ either written or worded (1) $d = 3.6 \times 10^{10} [\text{m}]$ (1) ecf	[3]	
	(<i>d</i>)	Values substituted correctly into a correct equation (1) $M_2 = 5.9 \times 10^{26} [\text{kg}]$ (1) ecf on <i>d</i> and <i>r</i>	[3]	
		i.e. 100 times / [much] larger than the Earth (1) (allow ecf on M)		
		Question 6 Total	[10]	

Question			Marking details				Marks Available			
7	(<i>a</i>)		$T = \frac{pV}{nR}$ or implied (1)					[0]		
			$T = \frac{84000\times}{49.3\times8.3}$	$\frac{2}{31} = 410 [K]$	and $T = \frac{1}{2}$	$\frac{104000 \times 1.2}{49.3 \times 8.31} =$	305 [K]	(1)	[2]	
	(b)	(i)	U = 190 [k]] allow ecf					[1]	
		(ii)	U = 250 [k]] allow ecf					[1]	
	(c)		no area und	er graph or	no change	in volume			[1]	
	(<i>d</i>)		temp consta	ant / interna	l energy on	ly depends o	on temperat	ure /	[1]	
			because the	y are isother	rms					
	(e)	(i)	A clear val							
			(counting s							
			$DA = \frac{1}{2}(140)$	[2]						
			or better $\frac{1}{2}$ (140000 + 105000) x 0.4 (no penalty for mysterious -ve							
			sign or +ve	sign or +ve sign) $+\frac{1}{2}(105000 + 84000) \ge 0.4 = \pm 86.8 [kJ]$						
		(ii)	$BC = \frac{1}{2}(10)$	4 000 + 64 0	000) x 0.8 =	67.2 [kJ] (1)		[1]	
			or better $\frac{1}{2}$	(104000 + 7)	78000) x 0.	4 (sign pena	lised here!))		
			$\frac{1}{2}(78000 + 64000) \ge 0.4 = 64.8 \text{ [kJ]}$							
	(f)		Allow ecf						[4]	
			W/	AB	BC	CD	DA	ABCDA		
				0 -60[1/1]	6/[KJ] 0	0 60[1/1]	-90 KJ	-23[KJ]		
			0	-60 [kJ]	67[kJ]	60 [kJ]	-90 kJ	-23[kJ]		
			~	(1)	(1)	(1)		(1)		
			Question 7	Total					[13]	

GCE PHYSICS MS - January 2013

© WJEC CBAC Ltd.

WJEC 245 Western Avenue Cardiff CF5 2YX Tel No 029 2026 5000 Fax 029 2057 5994 E-mail: <u>exams@wjec.co.uk</u> website: <u>www.wjec.co.uk</u>